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Background

* A Proof of Concept study was conducted last year — the
objective was to gain some practices in Machine Learning
with a clinical use case.
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The RESULTS of this paper was our target

Dig Dis Sci. 2017 Oct;62(10):2719-2727_ doi: 10.1007/s10620-017-4722-8. Epub 2017 Aug 23.

Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete
Blood Count Data.

Hormbrook MC', Goshen R?, Choman E?, O'Keeffe-Rosetti M2, Kinar Y24, Liles EG?, Rust KC3*®.
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Erratum in
Correction to: Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data. [Dig Dis Sci.
2018]

Abstract
BACKGROUND: Machine learning tools identify patients with blood counts indicating greater likelihood of colorectal cancer and warranting
colonoscopy referral.

AIMS: To validate a machine learning colorectal cancer detection model on a US community-based insured adult population.

METHODS: Eligible colorectal cancer cases (439 females, 461 males) with complete blood counts before diagnosis were identified from
Kaiser Permanente Northwest Region's Tumor Registry. Control patients (n = 9108) were randomly selected from KPNW's population who
had no cancers, received at =1 blood count, had continuous enrollment from 180 days prior to the blood count through 24 months after the
count, and were aged 40-89. For each control, one blood count was randomly selected as the pseudo-colorectal cancer diagnosis date for
matching to cases, and assigned a "calendar year” based on the count date. For each calendar year, 18 controls were randomly selected to
match the general enrollment's 10-year age groups and lengths of continuous enrollment. Prediction performance was evaluated by area
under the curve, specificity, and odds ratios.

RESULTS: Area under the receiver operating characteristics curve for detecting colorectal cancer was 0.80 = 0.01. At 99% specificity, the
odds ratio for association of a high-risk detection score with colorectal cancer was 34.7 (95% Cl 28.9-40_4). The detection model had the
highest accuracy in identifying right-sided colorectal cancers.

CONCLUSIONS: ColonFlag® identifies individuals with tenfold higher risk of undiagnosed colorectal cancer at curable stages (0/1/11), flags
colorectal tumors 130-360 days prior to usual clinical diagnosis, and is more accurate at identifying right-sided (compared to left-sided)
colorectal cancers.



Motivation: Colorectal Cancer is more treatable
if detected earlier

Colorectal cancer is the most Screening / Examination:

commonest cancer in HK :
. 4 Faecal
occult blood Colonoscopy

Can ML assist to find unscreened patients
at high risk of colorectal cancer?

To recommend high risk patients to have a
colonoscopy...



https://www.chp.gov.hk/en/healthtopics/content/25/51.html
https://www.chp.gov.hk/en/healthtopics/content/25/51.html
https://www.chp.gov.hk/en/healthtopics/content/25/51.html
https://www.chp.gov.hk/en/healthtopics/content/25/51.html

Training Dataset Preparation for Predictive Colorectal
Cancer by Machine Learning

Labelling data with
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1A CBC+ Age + Sex Histopathology results
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Predictive risk

With ML algorithm, based on very subtle changes in CBC values to predict colorectal cancer



Data Extraction and Labelling

CBC data from a local LIS

/\

Pathology results Pathology results are
are Negative Positive cancer
/\
Specimen site is Specimen site is
NOT Colorectal Colorectal
) v
Class <- Negative Class <- Unknown Class <- Positive

Training Dataset: De-identified lab data retrieved from Laboratory Information System of an acute hospital
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Cohort Selection

Patients with CBC data
n=61027

h 4

Aged between 40 and 80
n=44389

v

h 4

With pathology lab result in 365d

n=11885
Negative cancer Positive
data colorectal cancer
n =9444 n=264

Aged <40 or > 80
n=16638

No pathology investigation in 10y
or with pathology result >365d
n =32504

Non-colorectal pathology data
n=2177




Machine Learning Workflow
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Explorer

We tried using g V\V’VEKA [ o | (;) D at a
AutoML tools for the - | Knowesgerion |

Workbench
Waikato Environment for Knowledge Analysis
Version 3.8.2
(©) 1999 - 2017 Simple CLI
The University of Waikato

Hamilton, New Zealand

data modelling.

Figure adapted from https://www_capgemini.com/2016/05/machine-learning-has-transformed-many-aspects-of-our-everyday-life/




Data Modelling using

WEKA

The University
of Waikato
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3 [] weC === Stratified cross-validation ===
4 [] RBC === Summary ===
5[] HGB [ (Nom) Class I
6 [ HCT - Correctly Classified Instances 9338 96.7037 %
7 ) Moy S Start Stop Incorrectly Classified Instances 320 3.2963 %
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9 [] MCHC Result list (right-click for options) Mean absolute error 2.8591
10 [ ] ROW Root mean squared error B8.1776
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Scheme

Instances

Features

Test mode

Classification accuracy

TP Rate
FP Rate
Precision
Recall
F-Measure

" AUC

Evaluation Results from

Tree-J48

9708

(Neg-9444; Pos-264)

4

(Sex, Age, HGB, Class)

10-fold CV
97.84%

N-1.000; P-0.208
N-0.792; P-0.000
N-0.978; P-1.000
N-1.000; P-0.208
N-0.989; P-0.345
0.581

RandomForest

9708

(Neg-9444; Pos-264)

4

(Sex, Age, HGB, Class)

10-fold CV
97.23%

N-0.994; P-0.216
N-0.784; P-0.006
N-0.978; P-0.483
N-0.994; P-0.216
N-0.986; P-0.298
0.685

RandomForest

9708

(Neg-9444; Pos-264)

13

(Sex, Age, CBC, Class)

10-fold CV
96.67%

N-0.987; P-0.235
N-0.765; P-0.013
N-0.979; P-0.339
N-0.987; P-0.235
N-0.983; P-0.277
0.781

'WEKA

The University
of Waikato

RandomForest
+CostSensitiveClassifier
(reweighted training)

9708
(Neg-9444; Pos-264)

13
(Sex, Age, CBC, Class)

10-fold CV
96.70%

N-0.986; P-0.284
N-0.716; P-0.014
N-0.980; P-0.362
N-0.986; P-0.284
N-0.983; P-0.319
0.814



Negative Predictive Value (NPV) — looks good

Gold Standard

+

Test + 75 189| 264 PPV= 0.284
Result | - 132 9312| 9444 NPV= 0.986
207 9501 9708

Sensitivity Specificity
0.362 0.980
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Automatic Data Modelling

Models G

Metric LogLoss s

eXtreme Gradient Boosted Trees Classifier with Early Stopping - Forest (10x)

M110 BP69 CODEGEN MONO b 8

&2 ENET Blender

M114 M64+65+60+50+62+...

&2 Advanced GLM Blender

M116 M64+65+60+59+62+

eXtreme Gradient Boosted Trees Classifier with Early Stopping - Forest (10x)

M102 BP69 CODEGEM MONO

& AVG Blender

M112 M63+103+61




Data Model — Feature Effects

Feature Effects

Features sorted by Impact 4 O Partial Dependence [ Predicted Actual

Search for features o]
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Data Model Evaluation

Data Selection: Cross Validation
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Lessons learnt

* Importance of good quality data for Machine Learning
* Heavy work on data Retrieval and Labelling

* Features selection requires Domain Knowledge

* Validation is critically important

* Imbalanced dataset issue

* Easy-to-use Data Science tools available for data modelling
- empowers ordinary people to take machine learning
initiatives into their own hands
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